Copied to
clipboard

?

G = C14×C8⋊C22order 448 = 26·7

Direct product of C14 and C8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C14×C8⋊C22, C568C23, C28.82C24, C8⋊(C22×C14), D83(C2×C14), (C14×D8)⋊25C2, (C2×D8)⋊11C14, C4.66(D4×C14), (C2×C56)⋊29C22, SD161(C2×C14), (C2×SD16)⋊4C14, (C2×C28).525D4, C28.329(C2×D4), (C7×D4)⋊13C23, (C7×D8)⋊19C22, D42(C22×C14), C4.5(C23×C14), Q82(C22×C14), (C7×Q8)⋊12C23, C23.50(C7×D4), (C14×SD16)⋊15C2, (C22×D4)⋊11C14, (D4×C14)⋊66C22, (C2×M4(2))⋊3C14, M4(2)⋊3(C2×C14), (Q8×C14)⋊54C22, C22.23(D4×C14), (C14×M4(2))⋊13C2, (C2×C28).975C23, (C7×SD16)⋊17C22, (C22×C14).172D4, C14.203(C22×D4), (C7×M4(2))⋊29C22, (C22×C28).465C22, (C2×C8)⋊2(C2×C14), (D4×C2×C14)⋊26C2, C2.27(D4×C2×C14), C4○D44(C2×C14), (C2×C4○D4)⋊11C14, (C14×C4○D4)⋊27C2, (C2×D4)⋊15(C2×C14), (C2×Q8)⋊14(C2×C14), (C2×C4).136(C7×D4), (C2×C14).419(C2×D4), (C7×C4○D4)⋊24C22, (C2×C4).45(C22×C14), (C22×C4).76(C2×C14), SmallGroup(448,1356)

Series: Derived Chief Lower central Upper central

C1C4 — C14×C8⋊C22
C1C2C4C28C7×D4C7×D8C7×C8⋊C22 — C14×C8⋊C22
C1C2C4 — C14×C8⋊C22
C1C2×C14C22×C28 — C14×C8⋊C22

Subgroups: 530 in 298 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×2], C4 [×2], C4 [×2], C22, C22 [×2], C22 [×22], C7, C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×5], D4 [×6], D4 [×11], Q8 [×2], Q8, C23, C23 [×11], C14, C14 [×2], C14 [×8], C2×C8 [×2], M4(2) [×4], D8 [×8], SD16 [×8], C22×C4, C22×C4, C2×D4, C2×D4 [×6], C2×D4 [×4], C2×Q8, C4○D4 [×4], C4○D4 [×2], C24, C28 [×2], C28 [×2], C28 [×2], C2×C14, C2×C14 [×2], C2×C14 [×22], C2×M4(2), C2×D8 [×2], C2×SD16 [×2], C8⋊C22 [×8], C22×D4, C2×C4○D4, C56 [×4], C2×C28 [×2], C2×C28 [×4], C2×C28 [×5], C7×D4 [×6], C7×D4 [×11], C7×Q8 [×2], C7×Q8, C22×C14, C22×C14 [×11], C2×C8⋊C22, C2×C56 [×2], C7×M4(2) [×4], C7×D8 [×8], C7×SD16 [×8], C22×C28, C22×C28, D4×C14, D4×C14 [×6], D4×C14 [×4], Q8×C14, C7×C4○D4 [×4], C7×C4○D4 [×2], C23×C14, C14×M4(2), C14×D8 [×2], C14×SD16 [×2], C7×C8⋊C22 [×8], D4×C2×C14, C14×C4○D4, C14×C8⋊C22

Quotients:
C1, C2 [×15], C22 [×35], C7, D4 [×4], C23 [×15], C14 [×15], C2×D4 [×6], C24, C2×C14 [×35], C8⋊C22 [×2], C22×D4, C7×D4 [×4], C22×C14 [×15], C2×C8⋊C22, D4×C14 [×6], C23×C14, C7×C8⋊C22 [×2], D4×C2×C14, C14×C8⋊C22

Generators and relations
 G = < a,b,c,d | a14=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Smallest permutation representation
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 102 81 35 64 56 21 92)(2 103 82 36 65 43 22 93)(3 104 83 37 66 44 23 94)(4 105 84 38 67 45 24 95)(5 106 71 39 68 46 25 96)(6 107 72 40 69 47 26 97)(7 108 73 41 70 48 27 98)(8 109 74 42 57 49 28 85)(9 110 75 29 58 50 15 86)(10 111 76 30 59 51 16 87)(11 112 77 31 60 52 17 88)(12 99 78 32 61 53 18 89)(13 100 79 33 62 54 19 90)(14 101 80 34 63 55 20 91)
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(85 102)(86 103)(87 104)(88 105)(89 106)(90 107)(91 108)(92 109)(93 110)(94 111)(95 112)(96 99)(97 100)(98 101)
(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 97)(41 98)(42 85)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 99)(54 100)(55 101)(56 102)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,102,81,35,64,56,21,92)(2,103,82,36,65,43,22,93)(3,104,83,37,66,44,23,94)(4,105,84,38,67,45,24,95)(5,106,71,39,68,46,25,96)(6,107,72,40,69,47,26,97)(7,108,73,41,70,48,27,98)(8,109,74,42,57,49,28,85)(9,110,75,29,58,50,15,86)(10,111,76,30,59,51,16,87)(11,112,77,31,60,52,17,88)(12,99,78,32,61,53,18,89)(13,100,79,33,62,54,19,90)(14,101,80,34,63,55,20,91), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,102)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,99)(97,100)(98,101), (29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,85)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,99)(54,100)(55,101)(56,102)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,102,81,35,64,56,21,92)(2,103,82,36,65,43,22,93)(3,104,83,37,66,44,23,94)(4,105,84,38,67,45,24,95)(5,106,71,39,68,46,25,96)(6,107,72,40,69,47,26,97)(7,108,73,41,70,48,27,98)(8,109,74,42,57,49,28,85)(9,110,75,29,58,50,15,86)(10,111,76,30,59,51,16,87)(11,112,77,31,60,52,17,88)(12,99,78,32,61,53,18,89)(13,100,79,33,62,54,19,90)(14,101,80,34,63,55,20,91), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,102)(86,103)(87,104)(88,105)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,99)(97,100)(98,101), (29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,97)(41,98)(42,85)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,99)(54,100)(55,101)(56,102) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,102,81,35,64,56,21,92),(2,103,82,36,65,43,22,93),(3,104,83,37,66,44,23,94),(4,105,84,38,67,45,24,95),(5,106,71,39,68,46,25,96),(6,107,72,40,69,47,26,97),(7,108,73,41,70,48,27,98),(8,109,74,42,57,49,28,85),(9,110,75,29,58,50,15,86),(10,111,76,30,59,51,16,87),(11,112,77,31,60,52,17,88),(12,99,78,32,61,53,18,89),(13,100,79,33,62,54,19,90),(14,101,80,34,63,55,20,91)], [(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(85,102),(86,103),(87,104),(88,105),(89,106),(90,107),(91,108),(92,109),(93,110),(94,111),(95,112),(96,99),(97,100),(98,101)], [(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,97),(41,98),(42,85),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,99),(54,100),(55,101),(56,102)])

Matrix representation G ⊆ GL6(𝔽113)

11200000
01120000
004000
000400
000040
000004
,
11220000
11210000
000010
00000112
000100
001000
,
11200000
11210000
001000
00011200
00000112
00001120
,
11200000
01120000
001000
000100
00001120
00000112

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[112,112,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,112,0,0],[112,112,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112,0,0,0,0,112,0],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112] >;

154 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F7A···7F8A8B8C8D14A···14R14S···14AD14AE···14BN28A···28X28Y···28AJ56A···56X
order1222222···24444447···7888814···1414···1414···1428···2828···2856···56
size1111224···42222441···144441···12···24···42···24···44···4

154 irreducible representations

dim11111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C7C14C14C14C14C14C14D4D4C7×D4C7×D4C8⋊C22C7×C8⋊C22
kernelC14×C8⋊C22C14×M4(2)C14×D8C14×SD16C7×C8⋊C22D4×C2×C14C14×C4○D4C2×C8⋊C22C2×M4(2)C2×D8C2×SD16C8⋊C22C22×D4C2×C4○D4C2×C28C22×C14C2×C4C23C14C2
# reps1122811661212486631186212

In GAP, Magma, Sage, TeX

C_{14}\times C_8\rtimes C_2^2
% in TeX

G:=Group("C14xC8:C2^2");
// GroupNames label

G:=SmallGroup(448,1356);
// by ID

G=gap.SmallGroup(448,1356);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,4790,14117,7068,124]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽